You are here: Home FACULTY Faculty A-Z
Quanquan Pang
Ph.D., Assistant Professor
Department of Energy and Resources Engineering, College of Engineering, Peking University

Education
2014 – 2017 Ph.D. University of Waterloo, Chemistry

2012 – 2014 M.S.  University of Waterloo, Chemistry
2008 – 2012 B.S.  Huazhong University of Science and Technology, Materials Science


Professional Experience
2020 – present    Assistant Professor            College of Engineering, Peking University

2020 – present    Co-PI, The Beijing Innovation Center for Engineering Science and Advanced Technology
2017 – 2020      Postdoctoral Associate   Materials Science & Engineering, Massachusetts Institute of Technology
2017                  Postdoctoral Fellow  Chemistry, University of Waterloo


Research Area

  • Development of materials and chemical solutions for batteries
  • Fundamental understanding of electrochemical processes in batteries
  • Development of new electrochemical systems for energy and environmental applications

Research Interests
In our group, we are interested in solving the most urgent and tough energy problems in front of us, and we tackle the problems from the perspective of electrochemistry.  We aim to develop efficient, reliable and yet low-cost batteries, geared towards grid energy storage and electric transportation, both of which are critical sectors for a clean and renewable future. We also aim to extend our expertise to develop electrochemical solutions for solving the pressing questions pertaining to fossil fuel shortage, CO2 accumulation, innovation on resources recycling and exploitation. One thrust of our research is to develop new chemical systems and materials/chemical solutions (electrolytes, electrodes) towards our envisioned systems and applications, and the other is to understand the chemical/materials origin and mechanism of how it works or fails, by applying a range of characterization techniques developed by us and the field.

Development of materials and chemical solutions for batteries         

  • Chalcogen electrochemical systems
  • Multi-valent battery systems
  • All-solid-state batteries
  • Low- and high-temperature battery chemistry

Fundamental understanding of electrochemical processes in batteries

  • Interfaces evolution (solid-solid, solid-liquid)
  • Phase and chemical evolution  (bulk and surface)
  • Time-resolved spectroscopies
  • Space-resolved spectroscopies and microscopies

Development of new electrochemical systems for energy and environmental applications

  • Fuel
  • Carbon
  • Resources

We always welcome international students from overseas and national students to reach out by email to discuss possibilities of joining our group and working on exciting projects as PhD students and postdoc fellows.  


Selected Publications

  • [22] Meng, J., Pang, Q.*, Mai, L*. Introduce tortuosity to retain polysulfides and suppress Li dendrites. Matter, 2020, 2, 1636. (Preview)
  • [21] Pang, Q., Kwok, C.Y., Kundu, D., Nazar L.F.* Lightweight metallic MgB2 mediates polysulfide redox and promises high-energy-density lithium-sulfur batteries. Joule, 2018, 3, 136.  
  • [20] Pang, Q., Zhou, L., Nazar L.F.*  An elastic and Li-ion-percolating hybrid membrane stabilizes Li metal plating. Proc. Natl. Acad. Sci. USA,  2018, 115, 12389.
  • [19] Pang, Q., Liang, X., Kochetkov, I.R., Hartmann, P., Nazar L.F. * Stabilizing lithium plating by a biphasic surface layer formed in situ. Angew. Chem. Int. Ed., 2018, 57, 9795.
  • [18] Pang, Q., Shyamsunder, A., Narayanan, B., Kwok, C.Y., Curtiss, L.A., Nazar L.F.*  Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries. Nature Energy, 2018, 3, 783.
  • [17] Pang, Q., Liang, X., Shyamsunder A., Nazar, L.F.*  An in vivo formed solid electrolyte surface layer enables stable plating of Li metal. Joule,  2017, 1, 871.
  • [16] Liang, X., Pang, Q., Kochetkov, I.R. Sempere, M.S., Huang, H., Sun, X., Nazar, L.F.*A facile surface chemistry route to a stabilized lithium metal anode. Nature Energy, 2017, 2, 17119.
  • [15] Lee, C.-W. †, Pang, Q. †, Ha, S., Cheng, L., Han, S.-D., Gallagher, K.G., Nazar, L.F.,* Balasubramanian, M.*  Directing the lithium-sulfur reaction pathway via sparingly solvating electrolytes for high energy density batteries. ACS Cent. Sci., 2017, 3,605.
  • [14] Shyamsunder, A., Beichel, W., Klose, P., Pang, Q., Scherer, H., Hoffmann, A., Murphy, G.K., Krossing, I., Nazar, L.F., Inhibiting Polysulfide Shuttle in Lithium–Sulfur Batteries through LowIonPairing Salts and a Triflamide Solvent, Angew. Chem. Intl. Ed., 2017, 56, 6192.
  • [13] Pang, Q. †, Liang, X. †, Kwok, C. Y. †, Nazar, L. F.*  Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nature Energy, 2016, 1, 16132.
  • [12] Pang, Q., Liang, X., Kwok, C.Y., Kulisch, J., Nazar, L.F.*  A comprehensive approach towards stable lithium-sulfur batteries with high volumetric energy density. Adv. Energy Mater., 2016, 7, 1601630.
  • [11] Pang, Q., Nazar, L.F.*  Long-life and high areal capacity Li-S batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption. ACS Nano, 2016, 10, 4111.
  • [10] Pang, Q., Kundu, D., Nazar, L.F.*  A graphene-like metallic cathode host for long-life and high-loading lithium-sulfur batteries. Mater. Horiz., 2016, 3,130.
  • [9] Liang, X., R. Yverick, Kwok, C.Y., Pang, Q., Nazar, L.F.*  Interwoven MXene nanosheet/carbon nanotube composites as Li-S cathode hosts. Adv. Mater., 2016, 29, 1603040.
  • [8] Talaie, E., Bonnick, P., Sun, X., Pang, Q., Liang, X., Nazar, L.F.* Methods and protocols for electrochemical energy storage materials research. Chem. Mater., 2016, 29, 90.
  • [7] Pang, Q., Liang, X., Kwok, C.Y., Nazar, L.F.*  The importance of chemical interactions between sulfur host materials and polysulfides for advanced lithium-sulfur batteries. J. Electrochem. Soc., 2015, 162, A2567.
  • [6] Pang, Q.,† Tang, J.,† Huang, H., Liang, X., Hart, C., Tam, K.C.,* Nazar, L.F.*  A nitrogen and sulfur dualdoped carbon derived from polyrhodanine/cellulose for lithiumsulfur batteries.  Adv. Mater., 2015, 27, 6021.
  • [5] Liang X., Kwok, C.Y., Lodi-Marzano, F., Pang, Q., Cuisinier, M., Huang, H., Hart, C., Houtarde, D., Brezesinski, T., Janek, J., and Nazar, L.F.*  Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: the ‘goldilocks’ principle. Adv. Energy Mater., 2015, 6, 1501636.
  • [4] Pang, Q., Kundu, D., Cuisinier, M., Nazar, L. F.*  Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nature Commun., 2014, 5, 4759.
  • [3] Liang, X., Hart, C., Pang Q., Garsuch, A., Weiss T., Nazar, L. F.*  A highly efficient polysulphide mediator for lithium-sulphur batteries. Nature Commun., 2014, 6, 5682.
  • [2] Nazar, L. F.,* Cuisinier, M., Pang, Q.  Lithium-sulfur batteries. MRS Bull., 2014, 39, 436.
  • [1] Wang, Z., Pang, Q., Deng, K., Yuan, L., Peng, Y., Huang, Y.*  Effects of titanium incorporation on phase and electrochemical performance in LiFePO4 cathode material. Electrochim. Acta, 2012, 78, 576.