Education
- Jan. 2017 Ph.D., Stanford University, Mechanical Engineering
- Jan. 2017 Ph.D. Minor, Stanford University, Electrical Engineering
- June 2012 M.S., Stanford University, Mechanical Engineering
- June 2010 B.S., Peking University, Department of Mechanics & Engineering Science
Feb. 2020-Present Assistant Professor at Dept. Mechanics & Aerospace, College of Engineering, Peking University
Feb. 2020-Present Co-PI at Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University
Oct. 2016-Feb. 2020 Postdoctoral Research Affiliate at High-Temperature Gasdynamics Laboratory (HTGL), Stanford University
Research Areas
1. Precision laser diagnostics for high-temperature gases
2. Experimental study of gas-phase reaction kinetics, gasdynamics and spectroscopy
Selected Professional Honors and Awards
- Bernard-Lewis Fellowship, the Combustion Institute, 2016
Selected Professional Activities
Reviewer for Optics Express, Journal of Quantitative Spectroscopy and Radiative Transfer, Applied Physics B, Combustion and Flame, Proceedings of the Combustion Institute, Fuel, Energy & Fuels, Combustion Science and Technology, Journal of Propulsion and Power, Journal of Thermo-physics and Heat Transfer, and Sensors.
Selected Recent Publications
- Ding, Y., Wang, S.* and Hanson, R.K., Sensitive and interference-immune formaldehyde diagnostic for high-temperature reacting gases using two-color laser absorption near 5.6 µm. Combust. Flame, 2020; 213: 194-201.
- Clayman, N.E., Manumpil, M.A., Matson, B.D., Wang, S., Slavney, A.H., Sarangi, R., Karunadasa, H.I. and Waymouth, R.M.*, Reactivity of NO2 with Porous and Conductive Copper Azobispyridine Metallopolymers. Inorg. Chem., 2019; 58(16): 10856-10860.
- Wang, S.* and Hanson, R.K., Quantitative 2-D OH thermometry using spectrally resolved planar laser-induced fluorescence. Opt. Lett. 2019; 44(3): 578-581.
- Chao, X.*, Shen, G., Sun, K., Wang, Z., Meng, Q., Wang, S. and Hanson, R.K., Cavity-enhanced absorption spectroscopy for shocktubes: Design and optimization. Proc. Combust. Inst., 2019; 37(2): 1345-1353.
- Wang, S.*, Davidson, D.F. and Hanson, R.K., Shock tube measurements of OH concentration time-histories in benzene, toluene, ethylbenzene and xylene oxidation. Proc. Combust. Inst., 2019; 37(1): 163-170.
- Wei, W., Peng, W.Y., Wang, Y., Choudhary, R., Wang, S., Shao, J.* and Hanson, R.K., Demonstration of non-absorbing interference rejection using wavelength modulation spectroscopy in high-pressure shock tubes. Appl. Phys. B, 2019; 125(1): 9.
- Campbell, M.F.*, Wang, S., Davidson, D.F. and Hanson, R.K., Shock tube study of normal heptane first-stage ignition near 3.5 atm. Combust. Flame, 2018; 198: 376-392.
- Wang, S.* and Hanson, R.K., 2018. Ultra-sensitive spectroscopy of OH radical in high-temperature transient reactions. Opt. Lett. 2018; 43(15): 3518-3521.
- Shao, J., Zhu, Y., Wang, S., Davidson, D.F.* and Hanson, R.K., A shock tube study of jet fuel pyrolysis and ignition at elevated pressures and temperatures. Fuel, 2018; 226: 338-344.
- Xu, R., Wang, K., Banerjee, S., Shao, J., Parise, T., Zhu, Y., Wang, S., Movaghar, A., Lee, D.J., Zhao, R., Han, X., Gao, Y., Lu, T., Brezinsky, K., Egolfopoulos, F.N., Davidson, D.F., Hanson, R.K., Bowman, C.T., Wang, H.*, A physics-based approach to modeling real-fuel combustion chemistry–II. Reaction kinetic models of jet and rocket fuels. Combust. Flame, 2018; 193: 520-537.
- Wang, S.* and Hanson, R.K., High-sensitivity 308.6-nm laser absorption diagnostic optimized for OH measurement in shock tube combustion studies. Appl. Phys. B, 2018; 124(3): 37.
- Wang, S.*, Davidson, D.F. and Hanson, R.K., Shock tube and laser absorption study of CH2O oxidation via simultaneous measurements of OH and CO. J Phys. Chem. A, 2017; 121(45): 8561-8568.
- Wang, S.*, Parise, T., Johnson, S.E., Davidson, D.F. and Hanson, R.K., A new diagnostic for hydrocarbon fuels using 3.41-µm diode laser absorption. Combust. Flame, 2017; 186: 129-139.
- Wang, S.*, Davidson, D.F., Jeffries, J.B. and Hanson, R.K., Time-resolved sub-ppm CH3 detection in a shock tube using cavity-enhanced absorption spectroscopy with a ps-pulsed UV laser. Proc. Combust. Inst., 2017; 36(3): 4549-4556.
- Wang, S.*, Davidson, D.F. and Hanson, R.K., Rate constants of long, branched, and unsaturated aldehydes with OH at elevated temperatures. Proc. Combust. Inst., 2017; 36(1): 151-160.
- Nations, M.*, Wang, S., Goldenstein, C.S., Davidson, D.F. and Hanson, R.K., Kinetics of Excited Oxygen Formation in Shock-Heated O2–Ar Mixtures. J. Phys. Chem. A, 2016; 120(42): 8234-8243.
- Wang, S., Davidson, D.F.* and Hanson, R.K., Shock Tube measurement for the dissociation rate constant of acetaldehyde using sensitive CO diagnostics. J. Phys. Chem. A, 2016; 120(35): 6895-6901.
- Wang, S., Davidson, D.F.* and Hanson, R.K., Improved shock tube measurement of the CH4+ Ar= CH3+ H+ Ar rate constant using UV cavity-enhanced absorption spectroscopy of CH3. J. Phys. Chem. A, 2016; 120(28): 5427-5434.
- Wang, S.*, Sun, K., Davidson, D.F., Jeffries, J.B. and Hanson, R.K., Cavity-enhanced absorption spectroscopy with a ps-pulsed UV laser for sensitive, high-speed measurements in a shock tube. Opt. Express, 2016; 24(1): 308-318.
- Wang, S., Sun, K., Davidson, D.F.*, Jeffries, J.B. and Hanson, R.K., Shock-tube measurement of acetone dissociation using cavity-enhanced absorption spectroscopy of CO. J. Phys. Chem. A, 2015; 119(28): 7257-7262.
- Wang, S.*, Davidson, D.F. and Hanson, R.K., High temperature measurements for the rate constants of C1–C4 aldehydes with OH in a shock tube. Proc. Combust. Inst., 2015; 35(1): 473-480.
- Campbell, M.F.*, Wang, S., Goldenstein, C.S., Spearrin, R.M., Tulgestke, A.M., Zaczek, L.T., Davidson, D.F. and Hanson, R.K., Constrained reaction volume shock tube study of n-heptane oxidation: Ignition delay times and time-histories of multiple species and temperature. Proc. Combust. Inst., 2015; 35(1): 231-239.
- Nations, M.*, Wang, S., Goldenstein, C.S., Sun, K., Davidson, D.F., Jeffries, J.B. and Hanson, R.K., Shock-tube measurements of excited oxygen atoms using cavity-enhanced absorption spectroscopy. Appl. Opt. 2015; 54(29): 8766-8775.
- Wang, S., Li, S., Davidson, D.F.* and Hanson, R.K., Shock Tube Measurement of the High-Temperature Rate Constant for OH+ CH3→ Products. J. Phys. Chem. A, 2015; 119(33): 8799-8805.
- Sur, R.*, Wang, S., Sun, K., Davidson, D.F., Jeffries, J.B. and Hanson, R.K., High-sensitivity interference-free diagnostic for measurement of methane in shock tubes. J. Quant. Spectrosc. Radiat. Transf., 2015; 156: 80-87.
Wang, S., Davidson, D.F. and Hanson, R.K., Shock Tube Techniques for Kinetic Target Data to Improve Reaction Models, in Mathematical Modeling of Gas-Phase Complex Reaction Systems: Pyrolysis and Combustion, Eds. Faravelli, T., Manenti, F. and Ranzi, E. Elsevier, 2019